Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia.
نویسندگان
چکیده
Transgenic (TG) human (h) extracellular superoxide dismutase (EC-SOD) targeted to type II cells protects postnatal newborn mouse lung development against hyperoxia by unknown mechanisms. Because alveolar development depends on timely proliferation of type II epithelium and differentiation to type I epithelium, we measured proliferation in bronchiolar and alveolar (surfactant protein C-positive) epithelium in air and 95% O2-exposed wild-type (WT) and TG hEC-SOD newborn mice at postnatal days 3, 5, and 7 (P3-P7), traversing the transition from saccular to alveolar stages. We found that TG hEC-SOD ameliorated the 95% O2-impaired bromodeoxyuridine uptake in alveolar and bronchiolar epithelium at P3, but not at P5 and P7, when overall epithelial proliferation rates were lower in air-exposed WT mice. Mouse EC-, CuZn-, and Mn-SOD expression were unaffected by hyperoxia or genotype. TG mice had less DNA damage than 95% O2-exposed WT mice at P3, measured by TdT-mediated dUTP nick end labeling (P < 0.05). Hyperoxia induced cell-cycle inhibitory protein p21cip/waf mRNA at P3, WT > TG, P = 0.06. 95% O2 impaired apical expression of type I cell alpha protein (T1alpha) in WT but not in TG mice at P3 and increased T1alpha in WT and TG mice at P7. Reducing the 95% O2-induced impairment of epithelial proliferation at a critical window of lung development was associated with protection against DNA damage and preservation of apical T1alpha expression at P3.
منابع مشابه
Extracellular superoxide dismutase protects lung development in hyperoxia-exposed newborn mice.
We tested the hypothesis that targeted transgenic overexpression of human extracellular superoxide dismutase (EC-SOD) would preserve alveolar development in hyperoxia-exposed newborn mice. We exposed newborn transgenic and wild-type mice to 95% oxygen (O2) or air x 7 days and measured bronchoalveolar lavage cell counts, and lung homogenate EC-SOD, oxidized and reduced glutathione, and myelopero...
متن کاملExtracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia.
Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene sh...
متن کاملHyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice.
Hyperoxia disrupts postnatal lung development in part through inducing inflammation. To determine the contribution of leukocyte-derived reactive oxygen species, we exposed newborn wild-type and NADPH oxidase p47(phox) subunit null (p47(phox-/-)) mice to air or acute hyperoxia (95% O(2)) for up to 11 days. Hyperoxia-induced pulmonary neutrophil influx was similar in wild-type and p47(-/-) mice a...
متن کاملLoss of EC-SOD in Hyperoxia
Extracellular superoxide dismutase (ECSOD) is highly expressed in lung tissue. ECSOD contains a heparin-binding domain that is sensitive to proteolysis. This heparin-binding domain is important in allowing ECSOD to exist in relatively high concentrations in specific regions of the extracellular matrix and on cell surfaces. ECSOD has been shown to protect the lung against hyperoxia in transgenic...
متن کاملType II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development.
Type II epithelial cells are essential for lung development and remodeling, as they are precursors for type I cells and can produce vascular mitogens. Although type II cell proliferation takes place after hyperoxia, it is unclear why alveolar remodeling occurs normally in adults whereas it is permanently disrupted in newborns. Using a line of transgenic mice whose type II cells could be identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 290 1 شماره
صفحات -
تاریخ انتشار 2006